Résoudre chaque équation et préciser combien elle admet de solutions. a) 5x(9x - 9)=0 b) (7x - 1)(1 - 7x) = 0 c) (5x - 4)² = 0 d) (5x + 1) (5x - 1)=0
Mathématiques
amandineamandine
Question
Résoudre chaque équation et préciser combien elle admet de solutions.
a) 5x(9x - 9)=0
b) (7x - 1)(1 - 7x) = 0
c) (5x - 4)² = 0
d) (5x + 1) (5x - 1)=0
a) 5x(9x - 9)=0
b) (7x - 1)(1 - 7x) = 0
c) (5x - 4)² = 0
d) (5x + 1) (5x - 1)=0
1 Réponse
-
1. Réponse dotrungduckid
a) [tex]5x(9x-9)=0[/tex]
ssi [tex]5x=0[/tex] ou [tex]9x-9=0[/tex]
ssi [tex]x=0[/tex] ou [tex]9x=9[/tex]
ssi [tex]x=0[/tex] ou [tex]x=1[/tex]
Donc, l'équation a 2 solutions: x=0 ; x=1
b) [tex](7x-1)(1-7x)=0[/tex]
ssi [tex]-(1-7x)(1-7x)=0[/tex]
ssi [tex]- (1-7x)^{2} =0[/tex]
ssi [tex](1-7x)^{2} =0[/tex]
ssi [tex]1-7x=0[/tex]
ssi [tex]-7x=-1[/tex]
ssi [tex]x= \frac{1}{7} [/tex]
Donc, l'équation a une solution: [tex]x= \frac{1}{7} [/tex]
c) [tex] (5x-4)^{2}=0 [/tex]
ssi [tex]5x-4=0[/tex]
ssi [tex]5x=4[/tex]
ssi [tex]x= \frac{4}{5} [/tex]
Donc, l'équation a une solution: [tex]x= \frac{4}{5} [/tex]
d) (5x+1)(5x-1)=0
ssi [tex]5x+1=0[/tex] ou [tex]5x-1=0[/tex]
ssi [tex]5x=-1[/tex] ou [tex]5x=1[/tex]
ssi [tex]x=- \frac{1}{5} [/tex] ou [tex]x= \frac{1}{5} [/tex]
Donc, l'équation a deux solutions: [tex]x=- \frac{1}{5} ;x= \frac{1}{5} [/tex]