Bonjour pouvez-vous m'aider svp ? On considère la fonction f, définie sur R, par f(x)=(2m+3)x^2-2mx+1 f(x) dépend de la valeur d'un paramètre m réel. On souhait
Mathématiques
Marie02
Question
Bonjour pouvez-vous m'aider svp ?
On considère la fonction f, définie sur R, par f(x)=(2m+3)x^2-2mx+1
f(x) dépend de la valeur d'un paramètre m réel. On souhaite déterminer le nombre de solutions de l'équation f(x)=0, ainsi que le signe de f(x) suivant les valeurs de m et de x.
1) Etudier la cas où m= -3/2
2) On suppose que m n'est pas = -3/2
On considère la fonction f, définie sur R, par f(x)=(2m+3)x^2-2mx+1
f(x) dépend de la valeur d'un paramètre m réel. On souhaite déterminer le nombre de solutions de l'équation f(x)=0, ainsi que le signe de f(x) suivant les valeurs de m et de x.
1) Etudier la cas où m= -3/2
2) On suppose que m n'est pas = -3/2
1 Réponse
-
1. Réponse Anonyme
f(x)=(2m+3)x^2-2mx+1
1) Étudier la cas où m= -3/2
f(x)=3x+1
f est affine et croissante
f(x)=0 donne x=-1/3
2) si m différent de -3/2
f(x)=(2m+3)x²-2mx+1
f(x)=0 donne Δ=(-2m)²-4(2m+3)=4m²-8m-12
* si m<-1 ou m>3 alors Δ>0
donc f(x)=0 admet 2 solutions α et β
* si m=-1 ou m=3 alors Δ=0
donc f(x)=0 admet 1 solutions α'
* si -1<m<3 alors Δ<0
donc f(x)=0 n'admet pas de solution