Mathématiques

Question

merci d'avance soit a réel non nul tel que A= a+1/a
calculer en fonction de A
a²+1/ a²
a3+1/a3
a à la puissance 4    +1/a   à la puissance 4

1 Réponse

  • [tex] a^{2} + \frac{1}{a^{2}} =a^{2} +2+ \frac{1}{a^{2}} -2 \\ \\ a^{2} + \frac{1}{a^{2}} =a^{2} +2*a* \frac{1}{a} + (\frac{1}{a})^{2} -2 \\ \\ a^{2} + \frac{1}{a^{2}} =(a+ \frac{1}{a}) ^{2} -2 \\ \\ a^{2} + \frac{1}{a^{2}} =A ^{2} -2[/tex]
    \--------------Hola!-----------------------Hola!-----------------------Hola!------/
    [tex]a ^{3} + \frac{1}{a ^{3}} =a ^{3} +3a+ \frac{3}{a}+ \frac{1}{a ^{3} } -3a- \frac{3}{a} \\ \\ a ^{3} + \frac{1}{a ^{3}} =a ^{3} +3a^{2}* \frac{1}{a} +3* \frac{1}{a^{2} }*a + \frac{1}{a ^{3} } -3a- 3*\frac{1}{a} \\ \\ a ^{3} + \frac{1}{a ^{3}} =a ^{3} +(3a^{2}* \frac{1}{a} )+(3* (\frac{1}{a})^{2}*a) +( \frac{1}{a })^{3} -3a- 3*\frac{1}{a} \\ \\ a ^{3} + \frac{1}{a ^{3}} =(a+ \frac{1}{a} )^{3}-3a-3*\frac{1}{a} \\ \\ a ^{3} + \frac{1}{a ^{3}} =(a+ \frac{1}{a} )^{3}-3(a+ \frac{1}{a} ) \\ \\ [/tex]
    [tex] a ^{3} + \frac{1}{a ^{3}} =A ^{3} -3A[/tex]
    \--------------Hola!-----------------------Hola!-----------------------Hola!------/
    [tex]a ^{4} + \frac{1}{a ^{4}} =(a ^{2} )^{2} +(\frac{1}{a ^{2}})^{2} \\ \\ a ^{4} + \frac{1}{a ^{4}} =(a^{2} + \frac{1}{a^{2}}) ^{2} -2 \\ \\ a ^{4} + \frac{1}{a ^{4}} =(A ^{2}-2 ) ^{2} -2 \\ \\ a ^{4} + \frac{1}{a ^{4}} =A ^{4}-4A ^{2}+4-2 \\ \\ a ^{4} + \frac{1}{a ^{4}} =A ^{4}-4A ^{2}+2[/tex]

Autres questions